1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
/// 加法运算符 `+`。
///
/// 请注意,默认情况下 `Rhs` 是 `Self`,但这不是强制性的。
/// 例如,[`std::time::SystemTime`] 实现 `Add<Duration>`,它允许以 `SystemTime = SystemTime + Duration` 形式进行操作。
///
///
/// [`std::time::SystemTime`]: ../../std/time/struct.SystemTime.html
///
/// # Examples
///
/// ## 可加分
///
/// ```
/// use std::ops::Add;
///
/// #[derive(Debug, Copy, Clone, PartialEq)]
/// struct Point {
///     x: i32,
///     y: i32,
/// }
///
/// impl Add for Point {
///     type Output = Self;
///
///     fn add(self, other: Self) -> Self {
///         Self {
///             x: self.x + other.x,
///             y: self.y + other.y,
///         }
///     }
/// }
///
/// assert_eq!(Point { x: 1, y: 0 } + Point { x: 2, y: 3 },
///            Point { x: 3, y: 3 });
/// ```
///
/// ## 使用泛型实现 `Add`
///
/// 这是使用泛型实现 `Add` trait 的同一 `Point` 结构体的示例。
///
/// ```
/// use std::ops::Add;
///
/// #[derive(Debug, Copy, Clone, PartialEq)]
/// struct Point<T> {
///     x: T,
///     y: T,
/// }
///
/// // 请注意,该实现使用关联类型 `Output`。
/// impl<T: Add<Output = T>> Add for Point<T> {
///     type Output = Self;
///
///     fn add(self, other: Self) -> Self::Output {
///         Self {
///             x: self.x + other.x,
///             y: self.y + other.y,
///         }
///     }
/// }
///
/// assert_eq!(Point { x: 1, y: 0 } + Point { x: 2, y: 3 },
///            Point { x: 3, y: 3 });
/// ```
///
#[lang = "add"]
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_on_unimplemented(
    on(all(_Self = "{integer}", Rhs = "{float}"), message = "cannot add a float to an integer",),
    on(all(_Self = "{float}", Rhs = "{integer}"), message = "cannot add an integer to a float",),
    message = "cannot add `{Rhs}` to `{Self}`",
    label = "no implementation for `{Self} + {Rhs}`"
)]
#[doc(alias = "+")]
pub trait Add<Rhs = Self> {
    /// 应用 `+` 运算符后的结果类型。
    #[stable(feature = "rust1", since = "1.0.0")]
    type Output;

    /// 执行 `+` 操作。
    ///
    /// # Example
    ///
    /// ```
    /// assert_eq!(12 + 1, 13);
    /// ```
    #[must_use]
    #[stable(feature = "rust1", since = "1.0.0")]
    fn add(self, rhs: Rhs) -> Self::Output;
}

macro_rules! add_impl {
    ($($t:ty)*) => ($(
        #[stable(feature = "rust1", since = "1.0.0")]
        impl Add for $t {
            type Output = $t;

            #[inline]
            #[rustc_inherit_overflow_checks]
            fn add(self, other: $t) -> $t { self + other }
        }

        forward_ref_binop! { impl Add, add for $t, $t }
    )*)
}

add_impl! { usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 f32 f64 }

/// 减法运算符 `-`。
///
/// 请注意,默认情况下 `Rhs` 是 `Self`,但这不是强制性的。
/// 例如,[`std::time::SystemTime`] 实现 `Sub<Duration>`,它允许以 `SystemTime = SystemTime - Duration` 形式进行操作。
///
///
/// [`std::time::SystemTime`]: ../../std/time/struct.SystemTime.html
///
/// # Examples
///
/// ## 可减分
///
/// ```
/// use std::ops::Sub;
///
/// #[derive(Debug, Copy, Clone, PartialEq)]
/// struct Point {
///     x: i32,
///     y: i32,
/// }
///
/// impl Sub for Point {
///     type Output = Self;
///
///     fn sub(self, other: Self) -> Self::Output {
///         Self {
///             x: self.x - other.x,
///             y: self.y - other.y,
///         }
///     }
/// }
///
/// assert_eq!(Point { x: 3, y: 3 } - Point { x: 2, y: 3 },
///            Point { x: 1, y: 0 });
/// ```
///
/// ## 使用泛型实现 `Sub`
///
/// 这是使用泛型实现 `Sub` trait 的同一 `Point` 结构体的示例。
///
/// ```
/// use std::ops::Sub;
///
/// #[derive(Debug, PartialEq)]
/// struct Point<T> {
///     x: T,
///     y: T,
/// }
///
/// // 请注意,该实现使用关联类型 `Output`。
/// impl<T: Sub<Output = T>> Sub for Point<T> {
///     type Output = Self;
///
///     fn sub(self, other: Self) -> Self::Output {
///         Point {
///             x: self.x - other.x,
///             y: self.y - other.y,
///         }
///     }
/// }
///
/// assert_eq!(Point { x: 2, y: 3 } - Point { x: 1, y: 0 },
///            Point { x: 1, y: 3 });
/// ```
///
#[lang = "sub"]
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_on_unimplemented(
    message = "cannot subtract `{Rhs}` from `{Self}`",
    label = "no implementation for `{Self} - {Rhs}`"
)]
#[doc(alias = "-")]
pub trait Sub<Rhs = Self> {
    /// 应用 `-` 运算符后的结果类型。
    #[stable(feature = "rust1", since = "1.0.0")]
    type Output;

    /// 执行 `-` 操作。
    ///
    /// # Example
    ///
    /// ```
    /// assert_eq!(12 - 1, 11);
    /// ```
    #[must_use]
    #[stable(feature = "rust1", since = "1.0.0")]
    fn sub(self, rhs: Rhs) -> Self::Output;
}

macro_rules! sub_impl {
    ($($t:ty)*) => ($(
        #[stable(feature = "rust1", since = "1.0.0")]
        impl Sub for $t {
            type Output = $t;

            #[inline]
            #[rustc_inherit_overflow_checks]
            fn sub(self, other: $t) -> $t { self - other }
        }

        forward_ref_binop! { impl Sub, sub for $t, $t }
    )*)
}

sub_impl! { usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 f32 f64 }

/// 乘法运算符 `*`。
///
/// 请注意,默认情况下 `Rhs` 是 `Self`,但这不是强制性的。
///
/// # Examples
///
/// ## 可复制的有理数
///
/// ```
/// use std::ops::Mul;
///
/// // 根据算术的基本定理,最低限度的有理数是唯一的。
/// // 因此,通过将 `Rational` 保持为简化形式,我们可以得出 `Eq` 和 `PartialEq`。
/////
/// #[derive(Debug, Eq, PartialEq)]
/// struct Rational {
///     numerator: usize,
///     denominator: usize,
/// }
///
/// impl Rational {
///     fn new(numerator: usize, denominator: usize) -> Self {
///         if denominator == 0 {
///             panic!("Zero is an invalid denominator!");
///         }
///
///         // 用最大公约数除以最低条件。
/////
///         let gcd = gcd(numerator, denominator);
///         Self {
///             numerator: numerator / gcd,
///             denominator: denominator / gcd,
///         }
///     }
/// }
///
/// impl Mul for Rational {
///     // 有理数的乘法是一个封闭运算。
///     type Output = Self;
///
///     fn mul(self, rhs: Self) -> Self {
///         let numerator = self.numerator * rhs.numerator;
///         let denominator = self.denominator * rhs.denominator;
///         Self::new(numerator, denominator)
///     }
/// }
///
/// // 欧几里德 (Euclid) 具有 2000 年历史的算法,用于找到最大公约数。
/////
/// fn gcd(x: usize, y: usize) -> usize {
///     let mut x = x;
///     let mut y = y;
///     while y != 0 {
///         let t = y;
///         y = x % y;
///         x = t;
///     }
///     x
/// }
///
/// assert_eq!(Rational::new(1, 2), Rational::new(2, 4));
/// assert_eq!(Rational::new(2, 3) * Rational::new(3, 4),
///            Rational::new(1, 2));
/// ```
///
/// ## 将 vectors 乘以线性代数中的标量
///
/// ```
/// use std::ops::Mul;
///
/// struct Scalar { value: usize }
///
/// #[derive(Debug, PartialEq)]
/// struct Vector { value: Vec<usize> }
///
/// impl Mul<Scalar> for Vector {
///     type Output = Self;
///
///     fn mul(self, rhs: Scalar) -> Self::Output {
///         Self { value: self.value.iter().map(|v| v * rhs.value).collect() }
///     }
/// }
///
/// let vector = Vector { value: vec![2, 4, 6] };
/// let scalar = Scalar { value: 3 };
/// assert_eq!(vector * scalar, Vector { value: vec![6, 12, 18] });
/// ```
#[lang = "mul"]
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_on_unimplemented(
    message = "cannot multiply `{Self}` by `{Rhs}`",
    label = "no implementation for `{Self} * {Rhs}`"
)]
#[doc(alias = "*")]
pub trait Mul<Rhs = Self> {
    /// 应用 `*` 运算符后的结果类型。
    #[stable(feature = "rust1", since = "1.0.0")]
    type Output;

    /// 执行 `*` 操作。
    ///
    /// # Example
    ///
    /// ```
    /// assert_eq!(12 * 2, 24);
    /// ```
    #[must_use]
    #[stable(feature = "rust1", since = "1.0.0")]
    fn mul(self, rhs: Rhs) -> Self::Output;
}

macro_rules! mul_impl {
    ($($t:ty)*) => ($(
        #[stable(feature = "rust1", since = "1.0.0")]
        impl Mul for $t {
            type Output = $t;

            #[inline]
            #[rustc_inherit_overflow_checks]
            fn mul(self, other: $t) -> $t { self * other }
        }

        forward_ref_binop! { impl Mul, mul for $t, $t }
    )*)
}

mul_impl! { usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 f32 f64 }

/// 除法运算符 `/`。
///
/// 请注意,默认情况下 `Rhs` 是 `Self`,但这不是强制性的。
///
/// # Examples
///
/// ## 可划分的有理数
///
/// ```
/// use std::ops::Div;
///
/// // 根据算术的基本定理,最低限度的有理数是唯一的。
/// // 因此,通过将 `Rational` 保持为简化形式,我们可以得出 `Eq` 和 `PartialEq`。
/////
/// #[derive(Debug, Eq, PartialEq)]
/// struct Rational {
///     numerator: usize,
///     denominator: usize,
/// }
///
/// impl Rational {
///     fn new(numerator: usize, denominator: usize) -> Self {
///         if denominator == 0 {
///             panic!("Zero is an invalid denominator!");
///         }
///
///         // 用最大公约数除以最低条件。
/////
///         let gcd = gcd(numerator, denominator);
///         Self {
///             numerator: numerator / gcd,
///             denominator: denominator / gcd,
///         }
///     }
/// }
///
/// impl Div for Rational {
///     // 有理数的除法是封闭的运算。
///     type Output = Self;
///
///     fn div(self, rhs: Self) -> Self::Output {
///         if rhs.numerator == 0 {
///             panic!("Cannot divide by zero-valued `Rational`!");
///         }
///
///         let numerator = self.numerator * rhs.denominator;
///         let denominator = self.denominator * rhs.numerator;
///         Self::new(numerator, denominator)
///     }
/// }
///
/// // 欧几里德 (Euclid) 具有 2000 年历史的算法,用于找到最大公约数。
/////
/// fn gcd(x: usize, y: usize) -> usize {
///     let mut x = x;
///     let mut y = y;
///     while y != 0 {
///         let t = y;
///         y = x % y;
///         x = t;
///     }
///     x
/// }
///
/// assert_eq!(Rational::new(1, 2), Rational::new(2, 4));
/// assert_eq!(Rational::new(1, 2) / Rational::new(3, 4),
///            Rational::new(2, 3));
/// ```
///
/// ## 将 vectors 除以线性代数中的标量
///
/// ```
/// use std::ops::Div;
///
/// struct Scalar { value: f32 }
///
/// #[derive(Debug, PartialEq)]
/// struct Vector { value: Vec<f32> }
///
/// impl Div<Scalar> for Vector {
///     type Output = Self;
///
///     fn div(self, rhs: Scalar) -> Self::Output {
///         Self { value: self.value.iter().map(|v| v / rhs.value).collect() }
///     }
/// }
///
/// let scalar = Scalar { value: 2f32 };
/// let vector = Vector { value: vec![2f32, 4f32, 6f32] };
/// assert_eq!(vector / scalar, Vector { value: vec![1f32, 2f32, 3f32] });
/// ```
#[lang = "div"]
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_on_unimplemented(
    message = "cannot divide `{Self}` by `{Rhs}`",
    label = "no implementation for `{Self} / {Rhs}`"
)]
#[doc(alias = "/")]
pub trait Div<Rhs = Self> {
    /// 应用 `/` 运算符后的结果类型。
    #[stable(feature = "rust1", since = "1.0.0")]
    type Output;

    /// 执行 `/` 操作。
    ///
    /// # Example
    ///
    /// ```
    /// assert_eq!(12 / 2, 6);
    /// ```
    #[must_use]
    #[stable(feature = "rust1", since = "1.0.0")]
    fn div(self, rhs: Rhs) -> Self::Output;
}

macro_rules! div_impl_integer {
    ($(($($t:ty)*) => $panic:expr),*) => ($($(
        /// 此运算将舍入为零,舍去精确结果的任何小数部分。
        ///
        ///
        /// # Panics
        ///
        #[doc = $panic]
        #[stable(feature = "rust1", since = "1.0.0")]
        impl Div for $t {
            type Output = $t;

            #[inline]
            fn div(self, other: $t) -> $t { self / other }
        }

        forward_ref_binop! { impl Div, div for $t, $t }
    )*)*)
}

div_impl_integer! {
    (usize u8 u16 u32 u64 u128) => "This operation will panic if `other == 0`.",
    (isize i8 i16 i32 i64 i128) => "This operation will panic if `other == 0` or the division results in overflow."
}

macro_rules! div_impl_float {
    ($($t:ty)*) => ($(
        #[stable(feature = "rust1", since = "1.0.0")]
        impl Div for $t {
            type Output = $t;

            #[inline]
            fn div(self, other: $t) -> $t { self / other }
        }

        forward_ref_binop! { impl Div, div for $t, $t }
    )*)
}

div_impl_float! { f32 f64 }

/// 余数运算符 `%`。
///
/// 请注意,默认情况下 `Rhs` 是 `Self`,但这不是强制性的。
///
/// # Examples
///
/// 本示例在 `SplitSlice` 对象上实现 `Rem`。
/// 实现 `Rem` 后,可以使用 `%` 运算符将其拆分为给定长度的相等切片后,找出切片的其余元素。
///
///
/// ```
/// use std::ops::Rem;
///
/// #[derive(PartialEq, Debug)]
/// struct SplitSlice<'a, T: 'a> {
///     slice: &'a [T],
/// }
///
/// impl<'a, T> Rem<usize> for SplitSlice<'a, T> {
///     type Output = Self;
///
///     fn rem(self, modulus: usize) -> Self::Output {
///         let len = self.slice.len();
///         let rem = len % modulus;
///         let start = len - rem;
///         Self {slice: &self.slice[start..]}
///     }
/// }
///
/// // 如果将 &[0,1、2、3、4、5、6、7] 分成大小为 3 的切片,则其余部分将为 &[6,7]。
/////
/// assert_eq!(SplitSlice { slice: &[0, 1, 2, 3, 4, 5, 6, 7] } % 3,
///            SplitSlice { slice: &[6, 7] });
/// ```
///
#[lang = "rem"]
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_on_unimplemented(
    message = "cannot mod `{Self}` by `{Rhs}`",
    label = "no implementation for `{Self} % {Rhs}`"
)]
#[doc(alias = "%")]
pub trait Rem<Rhs = Self> {
    /// 应用 `%` 运算符后的结果类型。
    #[stable(feature = "rust1", since = "1.0.0")]
    type Output;

    /// 执行 `%` 操作。
    ///
    /// # Example
    ///
    /// ```
    /// assert_eq!(12 % 10, 2);
    /// ```
    #[must_use]
    #[stable(feature = "rust1", since = "1.0.0")]
    fn rem(self, rhs: Rhs) -> Self::Output;
}

macro_rules! rem_impl_integer {
    ($(($($t:ty)*) => $panic:expr),*) => ($($(
        /// 此操作满足 `n % d == n - (n / d) * d`。
        /// 结果具有与左操作数相同的符号。
        ///
        /// # Panics
        ///
        #[doc = $panic]
        #[stable(feature = "rust1", since = "1.0.0")]
        impl Rem for $t {
            type Output = $t;

            #[inline]
            fn rem(self, other: $t) -> $t { self % other }
        }

        forward_ref_binop! { impl Rem, rem for $t, $t }
    )*)*)
}

rem_impl_integer! {
    (usize u8 u16 u32 u64 u128) => "This operation will panic if `other == 0`.",
    (isize i8 i16 i32 i64 i128) => "This operation will panic if `other == 0` or if `self / other` results in overflow."
}

macro_rules! rem_impl_float {
    ($($t:ty)*) => ($(

        /// 其余部分来自两个彩车的划分。
        ///
        /// 余数与除数具有相同的符号,并计算为: `x - (x / y).trunc() * y`.
        ///
        /// # Examples
        ///
        /// ```
        /// let x: f32 = 50.50;
        /// let y: f32 = 8.125;
        /// let remainder = x - (x / y).trunc() * y;
        ///
        /// // 两种操作的答案是 1.75
        /// assert_eq!(x % y, remainder);
        /// ```
        #[stable(feature = "rust1", since = "1.0.0")]
        impl Rem for $t {
            type Output = $t;

            #[inline]
            fn rem(self, other: $t) -> $t { self % other }
        }

        forward_ref_binop! { impl Rem, rem for $t, $t }
    )*)
}

rem_impl_float! { f32 f64 }

/// 一元求反运算符 `-`。
///
/// # Examples
///
/// `Sign` 的 `Neg` 实现,它允许使用 `-` 取反其值。
///
///
/// ```
/// use std::ops::Neg;
///
/// #[derive(Debug, PartialEq)]
/// enum Sign {
///     Negative,
///     Zero,
///     Positive,
/// }
///
/// impl Neg for Sign {
///     type Output = Self;
///
///     fn neg(self) -> Self::Output {
///         match self {
///             Sign::Negative => Sign::Positive,
///             Sign::Zero => Sign::Zero,
///             Sign::Positive => Sign::Negative,
///         }
///     }
/// }
///
/// // 负数肯定是负数。
/// assert_eq!(-Sign::Positive, Sign::Negative);
/// // 双重否定是积极的。
/// assert_eq!(-Sign::Negative, Sign::Positive);
/// // 零是它自己的否定。
/// assert_eq!(-Sign::Zero, Sign::Zero);
/// ```
#[lang = "neg"]
#[stable(feature = "rust1", since = "1.0.0")]
#[doc(alias = "-")]
pub trait Neg {
    /// 应用 `-` 运算符后的结果类型。
    #[stable(feature = "rust1", since = "1.0.0")]
    type Output;

    /// 执行一元 `-` 操作。
    ///
    /// # Example
    ///
    /// ```
    /// let x: i32 = 12;
    /// assert_eq!(-x, -12);
    /// ```
    #[must_use]
    #[stable(feature = "rust1", since = "1.0.0")]
    fn neg(self) -> Self::Output;
}

macro_rules! neg_impl {
    ($($t:ty)*) => ($(
        #[stable(feature = "rust1", since = "1.0.0")]
        impl Neg for $t {
            type Output = $t;

            #[inline]
            #[rustc_inherit_overflow_checks]
            fn neg(self) -> $t { -self }
        }

        forward_ref_unop! { impl Neg, neg for $t }
    )*)
}

neg_impl! { isize i8 i16 i32 i64 i128 f32 f64 }

/// 加法赋值运算符 `+=`。
///
/// # Examples
///
/// 本示例创建一个 `Point` 结构体,该结构体实现 `AddAssign` trait,然后演示对可变 `Point` 的添加分配。
///
///
/// ```
/// use std::ops::AddAssign;
///
/// #[derive(Debug, Copy, Clone, PartialEq)]
/// struct Point {
///     x: i32,
///     y: i32,
/// }
///
/// impl AddAssign for Point {
///     fn add_assign(&mut self, other: Self) {
///         *self = Self {
///             x: self.x + other.x,
///             y: self.y + other.y,
///         };
///     }
/// }
///
/// let mut point = Point { x: 1, y: 0 };
/// point += Point { x: 2, y: 3 };
/// assert_eq!(point, Point { x: 3, y: 3 });
/// ```
#[lang = "add_assign"]
#[stable(feature = "op_assign_traits", since = "1.8.0")]
#[rustc_on_unimplemented(
    message = "cannot add-assign `{Rhs}` to `{Self}`",
    label = "no implementation for `{Self} += {Rhs}`"
)]
#[doc(alias = "+")]
#[doc(alias = "+=")]
pub trait AddAssign<Rhs = Self> {
    /// 执行 `+=` 操作。
    ///
    /// # Example
    ///
    /// ```
    /// let mut x: u32 = 12;
    /// x += 1;
    /// assert_eq!(x, 13);
    /// ```
    #[stable(feature = "op_assign_traits", since = "1.8.0")]
    fn add_assign(&mut self, rhs: Rhs);
}

macro_rules! add_assign_impl {
    ($($t:ty)+) => ($(
        #[stable(feature = "op_assign_traits", since = "1.8.0")]
        impl AddAssign for $t {
            #[inline]
            #[rustc_inherit_overflow_checks]
            fn add_assign(&mut self, other: $t) { *self += other }
        }

        forward_ref_op_assign! { impl AddAssign, add_assign for $t, $t }
    )+)
}

add_assign_impl! { usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 f32 f64 }

/// 减法赋值运算符 `-=`。
///
/// # Examples
///
/// 本示例创建一个实现 `SubAssign` trait 的 `Point` 结构体,然后演示对可变 `Point` 的子分配。
///
///
/// ```
/// use std::ops::SubAssign;
///
/// #[derive(Debug, Copy, Clone, PartialEq)]
/// struct Point {
///     x: i32,
///     y: i32,
/// }
///
/// impl SubAssign for Point {
///     fn sub_assign(&mut self, other: Self) {
///         *self = Self {
///             x: self.x - other.x,
///             y: self.y - other.y,
///         };
///     }
/// }
///
/// let mut point = Point { x: 3, y: 3 };
/// point -= Point { x: 2, y: 3 };
/// assert_eq!(point, Point {x: 1, y: 0});
/// ```
#[lang = "sub_assign"]
#[stable(feature = "op_assign_traits", since = "1.8.0")]
#[rustc_on_unimplemented(
    message = "cannot subtract-assign `{Rhs}` from `{Self}`",
    label = "no implementation for `{Self} -= {Rhs}`"
)]
#[doc(alias = "-")]
#[doc(alias = "-=")]
pub trait SubAssign<Rhs = Self> {
    /// 执行 `-=` 操作。
    ///
    /// # Example
    ///
    /// ```
    /// let mut x: u32 = 12;
    /// x -= 1;
    /// assert_eq!(x, 11);
    /// ```
    #[stable(feature = "op_assign_traits", since = "1.8.0")]
    fn sub_assign(&mut self, rhs: Rhs);
}

macro_rules! sub_assign_impl {
    ($($t:ty)+) => ($(
        #[stable(feature = "op_assign_traits", since = "1.8.0")]
        impl SubAssign for $t {
            #[inline]
            #[rustc_inherit_overflow_checks]
            fn sub_assign(&mut self, other: $t) { *self -= other }
        }

        forward_ref_op_assign! { impl SubAssign, sub_assign for $t, $t }
    )+)
}

sub_assign_impl! { usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 f32 f64 }

/// 乘法分配运算符 `*=`。
///
/// # Examples
///
/// ```
/// use std::ops::MulAssign;
///
/// #[derive(Debug, PartialEq)]
/// struct Frequency { hertz: f64 }
///
/// impl MulAssign<f64> for Frequency {
///     fn mul_assign(&mut self, rhs: f64) {
///         self.hertz *= rhs;
///     }
/// }
///
/// let mut frequency = Frequency { hertz: 50.0 };
/// frequency *= 4.0;
/// assert_eq!(Frequency { hertz: 200.0 }, frequency);
/// ```
#[lang = "mul_assign"]
#[stable(feature = "op_assign_traits", since = "1.8.0")]
#[rustc_on_unimplemented(
    message = "cannot multiply-assign `{Self}` by `{Rhs}`",
    label = "no implementation for `{Self} *= {Rhs}`"
)]
#[doc(alias = "*")]
#[doc(alias = "*=")]
pub trait MulAssign<Rhs = Self> {
    /// 执行 `*=` 操作。
    ///
    /// # Example
    ///
    /// ```
    /// let mut x: u32 = 12;
    /// x *= 2;
    /// assert_eq!(x, 24);
    /// ```
    #[stable(feature = "op_assign_traits", since = "1.8.0")]
    fn mul_assign(&mut self, rhs: Rhs);
}

macro_rules! mul_assign_impl {
    ($($t:ty)+) => ($(
        #[stable(feature = "op_assign_traits", since = "1.8.0")]
        impl MulAssign for $t {
            #[inline]
            #[rustc_inherit_overflow_checks]
            fn mul_assign(&mut self, other: $t) { *self *= other }
        }

        forward_ref_op_assign! { impl MulAssign, mul_assign for $t, $t }
    )+)
}

mul_assign_impl! { usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 f32 f64 }

/// 部门分配运算符 `/=`。
///
/// # Examples
///
/// ```
/// use std::ops::DivAssign;
///
/// #[derive(Debug, PartialEq)]
/// struct Frequency { hertz: f64 }
///
/// impl DivAssign<f64> for Frequency {
///     fn div_assign(&mut self, rhs: f64) {
///         self.hertz /= rhs;
///     }
/// }
///
/// let mut frequency = Frequency { hertz: 200.0 };
/// frequency /= 4.0;
/// assert_eq!(Frequency { hertz: 50.0 }, frequency);
/// ```
#[lang = "div_assign"]
#[stable(feature = "op_assign_traits", since = "1.8.0")]
#[rustc_on_unimplemented(
    message = "cannot divide-assign `{Self}` by `{Rhs}`",
    label = "no implementation for `{Self} /= {Rhs}`"
)]
#[doc(alias = "/")]
#[doc(alias = "/=")]
pub trait DivAssign<Rhs = Self> {
    /// 执行 `/=` 操作。
    ///
    /// # Example
    ///
    /// ```
    /// let mut x: u32 = 12;
    /// x /= 2;
    /// assert_eq!(x, 6);
    /// ```
    #[stable(feature = "op_assign_traits", since = "1.8.0")]
    fn div_assign(&mut self, rhs: Rhs);
}

macro_rules! div_assign_impl {
    ($($t:ty)+) => ($(
        #[stable(feature = "op_assign_traits", since = "1.8.0")]
        impl DivAssign for $t {
            #[inline]
            fn div_assign(&mut self, other: $t) { *self /= other }
        }

        forward_ref_op_assign! { impl DivAssign, div_assign for $t, $t }
    )+)
}

div_assign_impl! { usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 f32 f64 }

/// 余数赋值运算符 `%=`。
///
/// # Examples
///
/// ```
/// use std::ops::RemAssign;
///
/// struct CookieJar { cookies: u32 }
///
/// impl RemAssign<u32> for CookieJar {
///     fn rem_assign(&mut self, piles: u32) {
///         self.cookies %= piles;
///     }
/// }
///
/// let mut jar = CookieJar { cookies: 31 };
/// let piles = 4;
///
/// println!("Splitting up {} cookies into {} even piles!", jar.cookies, piles);
///
/// jar %= piles;
///
/// println!("{} cookies remain in the cookie jar!", jar.cookies);
/// ```
#[lang = "rem_assign"]
#[stable(feature = "op_assign_traits", since = "1.8.0")]
#[rustc_on_unimplemented(
    message = "cannot mod-assign `{Self}` by `{Rhs}``",
    label = "no implementation for `{Self} %= {Rhs}`"
)]
#[doc(alias = "%")]
#[doc(alias = "%=")]
pub trait RemAssign<Rhs = Self> {
    /// 执行 `%=` 操作。
    ///
    /// # Example
    ///
    /// ```
    /// let mut x: u32 = 12;
    /// x %= 10;
    /// assert_eq!(x, 2);
    /// ```
    #[stable(feature = "op_assign_traits", since = "1.8.0")]
    fn rem_assign(&mut self, rhs: Rhs);
}

macro_rules! rem_assign_impl {
    ($($t:ty)+) => ($(
        #[stable(feature = "op_assign_traits", since = "1.8.0")]
        impl RemAssign for $t {
            #[inline]
            fn rem_assign(&mut self, other: $t) { *self %= other }
        }

        forward_ref_op_assign! { impl RemAssign, rem_assign for $t, $t }
    )+)
}

rem_assign_impl! { usize u8 u16 u32 u64 u128 isize i8 i16 i32 i64 i128 f32 f64 }