1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
//! `f32` 单精度浮点类型专用的常量。
//!
//! *[See also the `f32` primitive type][f32].*
//!
//! `consts` 子模块中提供了数学上有效的数字。
//!
//! 对于直接在此模块中定义的常量 (不同于 `consts` 子模块中定义的常量),新代码应改为使用直接在 `f32` 类型上定义的关联常量。
//!
//!
//!

#![stable(feature = "rust1", since = "1.0.0")]

use crate::convert::FloatToInt;
#[cfg(not(test))]
use crate::intrinsics;
use crate::mem;
use crate::num::FpCategory;

/// `f32` 内部表示形式的基数或基数。
/// 请改用 [`f32::RADIX`]。
///
/// # Examples
///
/// ```rust
/// // 弃用的方式
/// # #[allow(deprecated, deprecated_in_future)]
/// let r = std::f32::RADIX;
///
/// // 预期的方式
/// let r = f32::RADIX;
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_deprecated(since = "TBD", reason = "replaced by the `RADIX` associated constant on `f32`")]
pub const RADIX: u32 = f32::RADIX;

/// 以 2 为底的有效位数。
/// 请改用 [`f32::MANTISSA_DIGITS`]。
///
/// # Examples
///
/// ```rust
/// // 弃用的方式
/// # #[allow(deprecated, deprecated_in_future)]
/// let d = std::f32::MANTISSA_DIGITS;
///
/// // 预期的方式
/// let d = f32::MANTISSA_DIGITS;
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_deprecated(
    since = "TBD",
    reason = "replaced by the `MANTISSA_DIGITS` associated constant on `f32`"
)]
pub const MANTISSA_DIGITS: u32 = f32::MANTISSA_DIGITS;

/// 以 10 为基数的有效位数的大概数字。
/// 请改用 [`f32::DIGITS`]。
///
/// # Examples
///
/// ```rust
/// // 弃用的方式
/// # #[allow(deprecated, deprecated_in_future)]
/// let d = std::f32::DIGITS;
///
/// // 预期的方式
/// let d = f32::DIGITS;
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_deprecated(since = "TBD", reason = "replaced by the `DIGITS` associated constant on `f32`")]
pub const DIGITS: u32 = f32::DIGITS;

/// [Machine epsilon] `f32` 的值。
/// 请改用 [`f32::EPSILON`]。
///
/// 这是 `1.0` 与下一个较大的可表示数字之间的差异。
///
/// [Machine epsilon]: https://en.wikipedia.org/wiki/Machine_epsilon
///
/// # Examples
///
/// ```rust
/// // 弃用的方式
/// # #[allow(deprecated, deprecated_in_future)]
/// let e = std::f32::EPSILON;
///
/// // 预期的方式
/// let e = f32::EPSILON;
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_deprecated(
    since = "TBD",
    reason = "replaced by the `EPSILON` associated constant on `f32`"
)]
pub const EPSILON: f32 = f32::EPSILON;

/// 最小的 `f32` 有限值。
/// 请改用 [`f32::MIN`]。
///
/// # Examples
///
/// ```rust
/// // 弃用的方式
/// # #[allow(deprecated, deprecated_in_future)]
/// let min = std::f32::MIN;
///
/// // 预期的方式
/// let min = f32::MIN;
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_deprecated(since = "TBD", reason = "replaced by the `MIN` associated constant on `f32`")]
pub const MIN: f32 = f32::MIN;

/// 最小正 `f32` 正值。
/// 请改用 [`f32::MIN_POSITIVE`]。
///
/// # Examples
///
/// ```rust
/// // 弃用的方式
/// # #[allow(deprecated, deprecated_in_future)]
/// let min = std::f32::MIN_POSITIVE;
///
/// // 预期的方式
/// let min = f32::MIN_POSITIVE;
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_deprecated(
    since = "TBD",
    reason = "replaced by the `MIN_POSITIVE` associated constant on `f32`"
)]
pub const MIN_POSITIVE: f32 = f32::MIN_POSITIVE;

/// 最大的有限 `f32` 值。
/// 请改用 [`f32::MAX`]。
///
/// # Examples
///
/// ```rust
/// // 弃用的方式
/// # #[allow(deprecated, deprecated_in_future)]
/// let max = std::f32::MAX;
///
/// // 预期的方式
/// let max = f32::MAX;
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_deprecated(since = "TBD", reason = "replaced by the `MAX` associated constant on `f32`")]
pub const MAX: f32 = f32::MAX;

/// 比 2 的最小可能标准幂大一。
/// 请改用 [`f32::MIN_EXP`]。
///
/// # Examples
///
/// ```rust
/// // 弃用的方式
/// # #[allow(deprecated, deprecated_in_future)]
/// let min = std::f32::MIN_EXP;
///
/// // 预期的方式
/// let min = f32::MIN_EXP;
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_deprecated(
    since = "TBD",
    reason = "replaced by the `MIN_EXP` associated constant on `f32`"
)]
pub const MIN_EXP: i32 = f32::MIN_EXP;

/// 2 指数的最大可能乘方。
/// 请改用 [`f32::MAX_EXP`]。
///
/// # Examples
///
/// ```rust
/// // 弃用的方式
/// # #[allow(deprecated, deprecated_in_future)]
/// let max = std::f32::MAX_EXP;
///
/// // 预期的方式
/// let max = f32::MAX_EXP;
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_deprecated(
    since = "TBD",
    reason = "replaced by the `MAX_EXP` associated constant on `f32`"
)]
pub const MAX_EXP: i32 = f32::MAX_EXP;

/// 最小可能的标准幂为 10 指数。
/// 请改用 [`f32::MIN_10_EXP`]。
///
/// # Examples
///
/// ```rust
/// // 弃用的方式
/// # #[allow(deprecated, deprecated_in_future)]
/// let min = std::f32::MIN_10_EXP;
///
/// // 预期的方式
/// let min = f32::MIN_10_EXP;
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_deprecated(
    since = "TBD",
    reason = "replaced by the `MIN_10_EXP` associated constant on `f32`"
)]
pub const MIN_10_EXP: i32 = f32::MIN_10_EXP;

/// 最大可能功效为 10 指数。
/// 请改用 [`f32::MAX_10_EXP`]。
///
/// # Examples
///
/// ```rust
/// // 弃用的方式
/// # #[allow(deprecated, deprecated_in_future)]
/// let max = std::f32::MAX_10_EXP;
///
/// // 预期的方式
/// let max = f32::MAX_10_EXP;
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_deprecated(
    since = "TBD",
    reason = "replaced by the `MAX_10_EXP` associated constant on `f32`"
)]
pub const MAX_10_EXP: i32 = f32::MAX_10_EXP;

/// 不是数字 (NaN)。
/// 请改用 [`f32::NAN`]。
///
/// # Examples
///
/// ```rust
/// // 弃用的方式
/// # #[allow(deprecated, deprecated_in_future)]
/// let nan = std::f32::NAN;
///
/// // 预期的方式
/// let nan = f32::NAN;
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_deprecated(since = "TBD", reason = "replaced by the `NAN` associated constant on `f32`")]
pub const NAN: f32 = f32::NAN;

/// 无限 (∞)。
/// 请改用 [`f32::INFINITY`]。
///
/// # Examples
///
/// ```rust
/// // 弃用的方式
/// # #[allow(deprecated, deprecated_in_future)]
/// let inf = std::f32::INFINITY;
///
/// // 预期的方式
/// let inf = f32::INFINITY;
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_deprecated(
    since = "TBD",
    reason = "replaced by the `INFINITY` associated constant on `f32`"
)]
pub const INFINITY: f32 = f32::INFINITY;

/// 负无穷大 (−∞)。
/// 请改用 [`f32::NEG_INFINITY`]。
///
/// # Examples
///
/// ```rust
/// // 弃用的方式
/// # #[allow(deprecated, deprecated_in_future)]
/// let ninf = std::f32::NEG_INFINITY;
///
/// // 预期的方式
/// let ninf = f32::NEG_INFINITY;
/// ```
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_deprecated(
    since = "TBD",
    reason = "replaced by the `NEG_INFINITY` associated constant on `f32`"
)]
pub const NEG_INFINITY: f32 = f32::NEG_INFINITY;

/// 基本数学常量。
#[stable(feature = "rust1", since = "1.0.0")]
pub mod consts {
    // FIXME: 用 cmath 中的数学常量替换。

    /// 阿基米德的恒定 (π)
    #[stable(feature = "rust1", since = "1.0.0")]
    pub const PI: f32 = 3.14159265358979323846264338327950288_f32;

    /// 整圈常量 (τ)
    ///
    /// 等于 2π。
    #[stable(feature = "tau_constant", since = "1.47.0")]
    pub const TAU: f32 = 6.28318530717958647692528676655900577_f32;

    /// π/2
    #[stable(feature = "rust1", since = "1.0.0")]
    pub const FRAC_PI_2: f32 = 1.57079632679489661923132169163975144_f32;

    /// π/3
    #[stable(feature = "rust1", since = "1.0.0")]
    pub const FRAC_PI_3: f32 = 1.04719755119659774615421446109316763_f32;

    /// π/4
    #[stable(feature = "rust1", since = "1.0.0")]
    pub const FRAC_PI_4: f32 = 0.785398163397448309615660845819875721_f32;

    /// π/6
    #[stable(feature = "rust1", since = "1.0.0")]
    pub const FRAC_PI_6: f32 = 0.52359877559829887307710723054658381_f32;

    /// π/8
    #[stable(feature = "rust1", since = "1.0.0")]
    pub const FRAC_PI_8: f32 = 0.39269908169872415480783042290993786_f32;

    /// 1/π
    #[stable(feature = "rust1", since = "1.0.0")]
    pub const FRAC_1_PI: f32 = 0.318309886183790671537767526745028724_f32;

    /// 2/π
    #[stable(feature = "rust1", since = "1.0.0")]
    pub const FRAC_2_PI: f32 = 0.636619772367581343075535053490057448_f32;

    /// 2/sqrt(π)
    #[stable(feature = "rust1", since = "1.0.0")]
    pub const FRAC_2_SQRT_PI: f32 = 1.12837916709551257389615890312154517_f32;

    /// sqrt(2)
    #[stable(feature = "rust1", since = "1.0.0")]
    pub const SQRT_2: f32 = 1.41421356237309504880168872420969808_f32;

    /// 1/sqrt(2)
    #[stable(feature = "rust1", since = "1.0.0")]
    pub const FRAC_1_SQRT_2: f32 = 0.707106781186547524400844362104849039_f32;

    /// 欧拉数 (e)
    #[stable(feature = "rust1", since = "1.0.0")]
    pub const E: f32 = 2.71828182845904523536028747135266250_f32;

    /// log<sub>2</sub>(e)
    #[stable(feature = "rust1", since = "1.0.0")]
    pub const LOG2_E: f32 = 1.44269504088896340735992468100189214_f32;

    /// log<sub>2</sub>(10)
    #[stable(feature = "extra_log_consts", since = "1.43.0")]
    pub const LOG2_10: f32 = 3.32192809488736234787031942948939018_f32;

    /// log<sub>10</sub>(e)
    #[stable(feature = "rust1", since = "1.0.0")]
    pub const LOG10_E: f32 = 0.434294481903251827651128918916605082_f32;

    /// log<sub>10</sub>(2)
    #[stable(feature = "extra_log_consts", since = "1.43.0")]
    pub const LOG10_2: f32 = 0.301029995663981195213738894724493027_f32;

    /// ln(2)
    #[stable(feature = "rust1", since = "1.0.0")]
    pub const LN_2: f32 = 0.693147180559945309417232121458176568_f32;

    /// ln(10)
    #[stable(feature = "rust1", since = "1.0.0")]
    pub const LN_10: f32 = 2.30258509299404568401799145468436421_f32;
}

#[lang = "f32"]
#[cfg(not(test))]
impl f32 {
    /// `f32` 内部表示形式的基数或基数。
    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
    pub const RADIX: u32 = 2;

    /// 以 2 为底的有效位数。
    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
    pub const MANTISSA_DIGITS: u32 = 24;

    /// 以 10 为基数的有效位数的大概数字。
    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
    pub const DIGITS: u32 = 6;

    /// [Machine epsilon] `f32` 的值。
    ///
    /// 这是 `1.0` 与下一个较大的可表示数字之间的差异。
    ///
    /// [Machine epsilon]: https://en.wikipedia.org/wiki/Machine_epsilon
    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
    pub const EPSILON: f32 = 1.19209290e-07_f32;

    /// 最小的 `f32` 有限值。
    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
    pub const MIN: f32 = -3.40282347e+38_f32;
    /// 最小正 `f32` 正值。
    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
    pub const MIN_POSITIVE: f32 = 1.17549435e-38_f32;
    /// 最大的有限 `f32` 值。
    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
    pub const MAX: f32 = 3.40282347e+38_f32;

    /// 比 2 的最小可能标准幂大一。
    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
    pub const MIN_EXP: i32 = -125;
    /// 2 指数的最大可能乘方。
    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
    pub const MAX_EXP: i32 = 128;

    /// 最小可能的标准幂为 10 指数。
    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
    pub const MIN_10_EXP: i32 = -37;
    /// 最大可能功效为 10 指数。
    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
    pub const MAX_10_EXP: i32 = 38;

    /// 不是数字 (NaN)。
    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
    pub const NAN: f32 = 0.0_f32 / 0.0_f32;
    /// 无限 (∞)。
    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
    pub const INFINITY: f32 = 1.0_f32 / 0.0_f32;
    /// 负无穷大 (−∞)。
    #[stable(feature = "assoc_int_consts", since = "1.43.0")]
    pub const NEG_INFINITY: f32 = -1.0_f32 / 0.0_f32;

    /// 如果此值为 `NaN`,则返回 `true`。
    ///
    /// ```
    /// let nan = f32::NAN;
    /// let f = 7.0_f32;
    ///
    /// assert!(nan.is_nan());
    /// assert!(!f.is_nan());
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    #[rustc_const_unstable(feature = "const_float_classify", issue = "72505")]
    #[inline]
    pub const fn is_nan(self) -> bool {
        self != self
    }

    // FIXME(#50145): 由于担心可移植性,`abs` 在 libcore 中公开不可用,因此该实现仅供内部使用。
    //
    //
    #[inline]
    #[rustc_const_unstable(feature = "const_float_classify", issue = "72505")]
    const fn abs_private(self) -> f32 {
        f32::from_bits(self.to_bits() & 0x7fff_ffff)
    }

    /// 如果此值是正无穷大或负无穷大,则返回 `true`,否则返回 `false`。
    ///
    ///
    /// ```
    /// let f = 7.0f32;
    /// let inf = f32::INFINITY;
    /// let neg_inf = f32::NEG_INFINITY;
    /// let nan = f32::NAN;
    ///
    /// assert!(!f.is_infinite());
    /// assert!(!nan.is_infinite());
    ///
    /// assert!(inf.is_infinite());
    /// assert!(neg_inf.is_infinite());
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    #[rustc_const_unstable(feature = "const_float_classify", issue = "72505")]
    #[inline]
    pub const fn is_infinite(self) -> bool {
        self.abs_private() == Self::INFINITY
    }

    /// 如果此数字既不是无限的也不是 `NaN`,则返回 `true`。
    ///
    /// ```
    /// let f = 7.0f32;
    /// let inf = f32::INFINITY;
    /// let neg_inf = f32::NEG_INFINITY;
    /// let nan = f32::NAN;
    ///
    /// assert!(f.is_finite());
    ///
    /// assert!(!nan.is_finite());
    /// assert!(!inf.is_finite());
    /// assert!(!neg_inf.is_finite());
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    #[rustc_const_unstable(feature = "const_float_classify", issue = "72505")]
    #[inline]
    pub const fn is_finite(self) -> bool {
        // 无需单独处理 NaN: 如果 self 是 NaN,则比较不完全正确。
        //
        self.abs_private() < Self::INFINITY
    }

    /// 如果数字为 [subnormal],则返回 `true`。
    ///
    /// ```
    /// let min = f32::MIN_POSITIVE; // 1.17549435e-38f32
    /// let max = f32::MAX;
    /// let lower_than_min = 1.0e-40_f32;
    /// let zero = 0.0_f32;
    ///
    /// assert!(!min.is_subnormal());
    /// assert!(!max.is_subnormal());
    ///
    /// assert!(!zero.is_subnormal());
    /// assert!(!f32::NAN.is_subnormal());
    /// assert!(!f32::INFINITY.is_subnormal());
    /// // `0` 和 `min` 之间的值是次标准的。
    /// assert!(lower_than_min.is_subnormal());
    /// ```
    /// [subnormal]: https://en.wikipedia.org/wiki/Denormal_number
    #[stable(feature = "is_subnormal", since = "1.53.0")]
    #[rustc_const_unstable(feature = "const_float_classify", issue = "72505")]
    #[inline]
    pub const fn is_subnormal(self) -> bool {
        matches!(self.classify(), FpCategory::Subnormal)
    }

    /// 如果数字不为零,无穷大,[subnormal] 或 `NaN`,则返回 `true`。
    ///
    ///
    /// ```
    /// let min = f32::MIN_POSITIVE; // 1.17549435e-38f32
    /// let max = f32::MAX;
    /// let lower_than_min = 1.0e-40_f32;
    /// let zero = 0.0_f32;
    ///
    /// assert!(min.is_normal());
    /// assert!(max.is_normal());
    ///
    /// assert!(!zero.is_normal());
    /// assert!(!f32::NAN.is_normal());
    /// assert!(!f32::INFINITY.is_normal());
    /// // `0` 和 `min` 之间的值是次标准的。
    /// assert!(!lower_than_min.is_normal());
    /// ```
    /// [subnormal]: https://en.wikipedia.org/wiki/Denormal_number
    #[stable(feature = "rust1", since = "1.0.0")]
    #[rustc_const_unstable(feature = "const_float_classify", issue = "72505")]
    #[inline]
    pub const fn is_normal(self) -> bool {
        matches!(self.classify(), FpCategory::Normal)
    }

    /// 返回数字的浮点类别。
    /// 如果仅要测试一个属性,则通常使用特定谓词会更快。
    ///
    ///
    /// ```
    /// use std::num::FpCategory;
    ///
    /// let num = 12.4_f32;
    /// let inf = f32::INFINITY;
    ///
    /// assert_eq!(num.classify(), FpCategory::Normal);
    /// assert_eq!(inf.classify(), FpCategory::Infinite);
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    #[rustc_const_unstable(feature = "const_float_classify", issue = "72505")]
    pub const fn classify(self) -> FpCategory {
        const EXP_MASK: u32 = 0x7f800000;
        const MAN_MASK: u32 = 0x007fffff;

        let bits = self.to_bits();
        match (bits & MAN_MASK, bits & EXP_MASK) {
            (0, 0) => FpCategory::Zero,
            (_, 0) => FpCategory::Subnormal,
            (0, EXP_MASK) => FpCategory::Infinite,
            (_, EXP_MASK) => FpCategory::Nan,
            _ => FpCategory::Normal,
        }
    }

    /// 如果 `self` 具有正号,则返回 `true`,包括 `+0.0`,带有正号位和正无穷大的 NaN。
    ///
    ///
    /// ```
    /// let f = 7.0_f32;
    /// let g = -7.0_f32;
    ///
    /// assert!(f.is_sign_positive());
    /// assert!(!g.is_sign_positive());
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    #[rustc_const_unstable(feature = "const_float_classify", issue = "72505")]
    #[inline]
    pub const fn is_sign_positive(self) -> bool {
        !self.is_sign_negative()
    }

    /// 如果 `self` 带有负号,则返回 `true`,包括 `-0.0`,带有负号位和负无穷大的 NaN。
    ///
    ///
    /// ```
    /// let f = 7.0f32;
    /// let g = -7.0f32;
    ///
    /// assert!(!f.is_sign_negative());
    /// assert!(g.is_sign_negative());
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    #[rustc_const_unstable(feature = "const_float_classify", issue = "72505")]
    #[inline]
    pub const fn is_sign_negative(self) -> bool {
        // IEEE754 说: 当且仅当 x 具有负号时,isSignMinus(x) 才为 true。
        // isSignMinus 也适用于零和 NaN。
        self.to_bits() & 0x8000_0000 != 0
    }

    /// 取数字的倒数 (inverse), `1/x`.
    ///
    /// ```
    /// let x = 2.0_f32;
    /// let abs_difference = (x.recip() - (1.0 / x)).abs();
    ///
    /// assert!(abs_difference <= f32::EPSILON);
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    #[inline]
    pub fn recip(self) -> f32 {
        1.0 / self
    }

    /// 将弧度转换为度。
    ///
    /// ```
    /// let angle = std::f32::consts::PI;
    ///
    /// let abs_difference = (angle.to_degrees() - 180.0).abs();
    ///
    /// assert!(abs_difference <= f32::EPSILON);
    /// ```
    #[stable(feature = "f32_deg_rad_conversions", since = "1.7.0")]
    #[inline]
    pub fn to_degrees(self) -> f32 {
        // 使用常量可获得更好的精度。
        const PIS_IN_180: f32 = 57.2957795130823208767981548141051703_f32;
        self * PIS_IN_180
    }

    /// 将度数转换为弧度。
    ///
    /// ```
    /// let angle = 180.0f32;
    ///
    /// let abs_difference = (angle.to_radians() - std::f32::consts::PI).abs();
    ///
    /// assert!(abs_difference <= f32::EPSILON);
    /// ```
    #[stable(feature = "f32_deg_rad_conversions", since = "1.7.0")]
    #[inline]
    pub fn to_radians(self) -> f32 {
        let value: f32 = consts::PI;
        self * (value / 180.0f32)
    }

    /// 返回两个数字的最大值。
    ///
    /// ```
    /// let x = 1.0f32;
    /// let y = 2.0f32;
    ///
    /// assert_eq!(x.max(y), y);
    /// ```
    ///
    /// 如果参数之一是 NaN,则返回另一个参数。
    #[stable(feature = "rust1", since = "1.0.0")]
    #[inline]
    pub fn max(self, other: f32) -> f32 {
        intrinsics::maxnumf32(self, other)
    }

    /// 返回两个数字中的最小值。
    ///
    /// ```
    /// let x = 1.0f32;
    /// let y = 2.0f32;
    ///
    /// assert_eq!(x.min(y), x);
    /// ```
    ///
    /// 如果参数之一是 NaN,则返回另一个参数。
    #[stable(feature = "rust1", since = "1.0.0")]
    #[inline]
    pub fn min(self, other: f32) -> f32 {
        intrinsics::minnumf32(self, other)
    }

    /// 舍入为零并转换为任何原始整数类型,前提是该值是有限的并且适合该类型。
    ///
    ///
    /// ```
    /// let value = 4.6_f32;
    /// let rounded = unsafe { value.to_int_unchecked::<u16>() };
    /// assert_eq!(rounded, 4);
    ///
    /// let value = -128.9_f32;
    /// let rounded = unsafe { value.to_int_unchecked::<i8>() };
    /// assert_eq!(rounded, i8::MIN);
    /// ```
    ///
    /// # Safety
    ///
    /// 该值必须:
    ///
    /// * 不是 `NaN`
    /// * 不是无限的
    /// * 截断小数部分后,可以在返回类型 `Int` 中表示
    #[stable(feature = "float_approx_unchecked_to", since = "1.44.0")]
    #[inline]
    pub unsafe fn to_int_unchecked<Int>(self) -> Int
    where
        Self: FloatToInt<Int>,
    {
        // SAFETY: 调用者必须坚持 `FloatToInt::to_int_unchecked` 的安全保证。
        //
        unsafe { FloatToInt::<Int>::to_int_unchecked(self) }
    }

    /// 原始 trans 变为 `u32`。
    ///
    /// 当前,这与所有平台上的 `transmute::<f32, u32>(self)` 相同。
    ///
    /// 有关此操作的可移植性的一些讨论,请参见 [`from_bits`](Self::from_bits) (几乎没有问题)。
    ///
    /// 请注意,此函数与 `as` 强制转换不同,后者试图保留 *数字* 值,而不是按位值。
    ///
    ///
    /// # Examples
    ///
    /// ```
    /// assert_ne!((1f32).to_bits(), 1f32 as u32); // to_bits() 没有铸造!
    /// assert_eq!((12.5f32).to_bits(), 0x41480000);
    ///
    /// ```
    ///
    #[stable(feature = "float_bits_conv", since = "1.20.0")]
    #[rustc_const_unstable(feature = "const_float_bits_conv", issue = "72447")]
    #[inline]
    pub const fn to_bits(self) -> u32 {
        // SAFETY: `u32` 是一个普通的旧数据类型,因此我们可以随时将其转换
        unsafe { mem::transmute(self) }
    }

    /// 来自 `u32` 的原始 mut 变。
    ///
    /// 当前,这与所有平台上的 `transmute::<u32, f32>(v)` 相同。
    /// 事实证明,此方法具有很高的可移植性,其原因有两个:
    ///
    /// * 浮点数和整数在所有受支持的平台上具有相同的字节序。
    /// * IEEE-754 非常精确地指定了 float 的位布局。
    ///
    /// 但是,有一个警告: 在 2008 年版本的 IEEE-754 之前,实际上并未指定如何解释 NaN 信令位。
    /// 大多数平台 (特别是 x86 和 ARM) 采用了最终在 2008 年标准化的解释,但有些则没有 (特别是 MIPS)。
    /// 结果,MIPS 上的所有信令 NaN 都是 x86 上的安静 NaN,反之亦然。
    ///
    /// 该实现方式不是尝试保留跨信令的信令,而是倾向于保留确切的位。
    /// 这意味着,即使通过网络从 x86 机器向 MIPS 机器发送此方法的结果,所有以 NaNs 编码的有效载荷都将保留。
    ///
    ///
    /// 如果此方法的结果仅由产生它们的相同体系结构来操纵,则无需考虑可移植性。
    ///
    /// 如果输入的不是 NaN,则不存在可移植性问题。
    ///
    /// 如果您不太在意信号传递 (非常可能),那么就不必担心可移植性。
    ///
    /// 请注意,此函数与 `as` 强制转换不同,后者试图保留 *数字* 值,而不是按位值。
    ///
    /// # Examples
    ///
    /// ```
    /// let v = f32::from_bits(0x41480000);
    /// assert_eq!(v, 12.5);
    /// ```
    ///
    ///
    ///
    ///
    ///
    ///
    #[stable(feature = "float_bits_conv", since = "1.20.0")]
    #[rustc_const_unstable(feature = "const_float_bits_conv", issue = "72447")]
    #[inline]
    pub const fn from_bits(v: u32) -> Self {
        // SAFETY: `u32` 是一个普通的旧数据类型,因此我们可以随时对其进行转换事实证明 sNaN 的安全性问题被夸大了! Hooray!
        //
        unsafe { mem::transmute(v) }
    }

    /// 以大端 (网络) 字节顺序的字节数组形式返回此浮点数的内存表示形式。
    ///
    ///
    /// # Examples
    ///
    /// ```
    /// let bytes = 12.5f32.to_be_bytes();
    /// assert_eq!(bytes, [0x41, 0x48, 0x00, 0x00]);
    /// ```
    #[stable(feature = "float_to_from_bytes", since = "1.40.0")]
    #[rustc_const_unstable(feature = "const_float_bits_conv", issue = "72447")]
    #[inline]
    pub const fn to_be_bytes(self) -> [u8; 4] {
        self.to_bits().to_be_bytes()
    }

    /// 以小字节序字节顺序将浮点数的内存表示形式返回为字节数组。
    ///
    ///
    /// # Examples
    ///
    /// ```
    /// let bytes = 12.5f32.to_le_bytes();
    /// assert_eq!(bytes, [0x00, 0x00, 0x48, 0x41]);
    /// ```
    #[stable(feature = "float_to_from_bytes", since = "1.40.0")]
    #[rustc_const_unstable(feature = "const_float_bits_conv", issue = "72447")]
    #[inline]
    pub const fn to_le_bytes(self) -> [u8; 4] {
        self.to_bits().to_le_bytes()
    }

    /// 返回此浮点数的内存表示形式,以原生字节顺序的字节数组形式。
    ///
    /// 由于使用了目标平台的原生字节序,因此,可移植代码应酌情使用 [`to_be_bytes`] 或 [`to_le_bytes`]。
    ///
    ///
    /// [`to_be_bytes`]: f32::to_be_bytes
    /// [`to_le_bytes`]: f32::to_le_bytes
    ///
    /// # Examples
    ///
    /// ```
    /// let bytes = 12.5f32.to_ne_bytes();
    /// assert_eq!(
    ///     bytes,
    ///     if cfg!(target_endian = "big") {
    ///         [0x41, 0x48, 0x00, 0x00]
    ///     } else {
    ///         [0x00, 0x00, 0x48, 0x41]
    ///     }
    /// );
    /// ```
    ///
    #[stable(feature = "float_to_from_bytes", since = "1.40.0")]
    #[rustc_const_unstable(feature = "const_float_bits_conv", issue = "72447")]
    #[inline]
    pub const fn to_ne_bytes(self) -> [u8; 4] {
        self.to_bits().to_ne_bytes()
    }

    /// 从其表示形式以 big endian 的字节数组创建一个浮点值。
    ///
    /// # Examples
    ///
    /// ```
    /// let value = f32::from_be_bytes([0x41, 0x48, 0x00, 0x00]);
    /// assert_eq!(value, 12.5);
    /// ```
    #[stable(feature = "float_to_from_bytes", since = "1.40.0")]
    #[rustc_const_unstable(feature = "const_float_bits_conv", issue = "72447")]
    #[inline]
    pub const fn from_be_bytes(bytes: [u8; 4]) -> Self {
        Self::from_bits(u32::from_be_bytes(bytes))
    }

    /// 从它的表示形式以 Little Endian 的字节数组创建一个浮点值。
    ///
    /// # Examples
    ///
    /// ```
    /// let value = f32::from_le_bytes([0x00, 0x00, 0x48, 0x41]);
    /// assert_eq!(value, 12.5);
    /// ```
    #[stable(feature = "float_to_from_bytes", since = "1.40.0")]
    #[rustc_const_unstable(feature = "const_float_bits_conv", issue = "72447")]
    #[inline]
    pub const fn from_le_bytes(bytes: [u8; 4]) -> Self {
        Self::from_bits(u32::from_le_bytes(bytes))
    }

    /// 从其表示形式 (以原生字节序形式的字节数组形式) 创建浮点值。
    ///
    /// 由于使用了目标平台的原生字节序,因此可移植代码可能希望酌情使用 [`from_be_bytes`] 或 [`from_le_bytes`]。
    ///
    ///
    /// [`from_be_bytes`]: f32::from_be_bytes
    /// [`from_le_bytes`]: f32::from_le_bytes
    ///
    /// # Examples
    ///
    /// ```
    /// let value = f32::from_ne_bytes(if cfg!(target_endian = "big") {
    ///     [0x41, 0x48, 0x00, 0x00]
    /// } else {
    ///     [0x00, 0x00, 0x48, 0x41]
    /// });
    /// assert_eq!(value, 12.5);
    /// ```
    ///
    #[stable(feature = "float_to_from_bytes", since = "1.40.0")]
    #[rustc_const_unstable(feature = "const_float_bits_conv", issue = "72447")]
    #[inline]
    pub const fn from_ne_bytes(bytes: [u8; 4]) -> Self {
        Self::from_bits(u32::from_ne_bytes(bytes))
    }

    /// 返回 self 和其他值之间的顺序。
    /// 与浮点数之间的标准部分比较不同,此比较始终根据 IEEE 754 (2008 修订版) 浮点标准中定义的 totalOrder 谓词产生排序。
    /// 值按以下顺序排序:
    /// - 负安静 NaN
    /// - 负信号 NaN
    /// - 负无穷大
    /// - 负数
    /// - 负次正规数
    /// - 负零
    /// - 正零
    /// - 次正数
    /// - 正数
    /// - 正无穷大
    /// - 阳性信号 NaN
    /// - 积极安静的 NaN
    ///
    /// 请注意,此函数并不总是与 `f32` 的 [`PartialOrd`] 和 [`PartialEq`] 实现一致。特别是,他们将负零和正零视为相等,而 `total_cmp` 则不一样。
    ///
    /// # Example
    ///
    /// ```
    /// #![feature(total_cmp)]
    /// struct GoodBoy {
    ///     name: String,
    ///     weight: f32,
    /// }
    ///
    /// let mut bois = vec![
    ///     GoodBoy { name: "Pucci".to_owned(), weight: 0.1 },
    ///     GoodBoy { name: "Woofer".to_owned(), weight: 99.0 },
    ///     GoodBoy { name: "Yapper".to_owned(), weight: 10.0 },
    ///     GoodBoy { name: "Chonk".to_owned(), weight: f32::INFINITY },
    ///     GoodBoy { name: "Abs. Unit".to_owned(), weight: f32::NAN },
    ///     GoodBoy { name: "Floaty".to_owned(), weight: -5.0 },
    /// ];
    ///
    /// bois.sort_by(|a, b| a.weight.total_cmp(&b.weight));
    /// # assert!(bois.into_iter().map(|b| b.weight)
    /// #     .zip([-5.0, 0.1, 10.0, 99.0, f32::INFINITY, f32::NAN].iter())
    /// #     .all(|(a, b)| a.to_bits() == b.to_bits()))
    /// ```
    ///
    ///
    ///
    #[unstable(feature = "total_cmp", issue = "72599")]
    #[inline]
    pub fn total_cmp(&self, other: &Self) -> crate::cmp::Ordering {
        let mut left = self.to_bits() as i32;
        let mut right = other.to_bits() as i32;

        // 如果是负数,将除符号外的所有位翻转以实现与二进制补码整数相似的布局
        //
        // 为什么这样做? IEEE 754 浮点数包含三个字段:
        // 符号位,指数和尾数。整个指数和尾数字段具有以下属性: 它们的按位顺序等于定义大小的数字大小。
        // 幅度通常不是在 NaN 值上定义的,但是 IEEE 754 totalOrder 将 NaN 值也定义为遵循位顺序。这导致了文档注释中解释的顺序。
        // 但是,对于负数和正数,幅值的表示是相同的-仅符号位不同。
        // 为了轻松地将浮点数与带符号整数进行比较,在负数的情况下,我们需要翻转指数位和尾数位。
        // 我们将数字有效地转换为 "two's complement" 形式。
        //
        // 为了进行翻转,我们构造了一个掩码并对它进行 XOR。
        // 我们从负号值无分支地计算 "all-ones except for the sign bit" 掩码: 右移符号以扩展整数,因此我们用符号位 "fill" 掩码,然后转换为无符号以压入另一个零位。
        //
        // 如果为正值,则掩码全为零,因此是空操作。
        //
        //
        //
        //
        //
        //
        //
        //
        //
        left ^= (((left >> 31) as u32) >> 1) as i32;
        right ^= (((right >> 31) as u32) >> 1) as i32;

        left.cmp(&right)
    }

    /// 除非是 NaN,否则将值限制为一定的时间间隔。
    ///
    /// 如果 `self` 大于 `max`,则返回 `max`; 如果 `self` 小于 `min`,则返回 `min`。
    /// 否则,将返回 `self`。
    ///
    /// 请注意,如果初始值也为 NaN,则此函数将返回 NaN。
    ///
    /// # Panics
    ///
    /// 如果 `min > max`,`min` 为 NaN 或 `max` 为 NaN,则 Panics。
    ///
    /// # Examples
    ///
    /// ```
    /// assert!((-3.0f32).clamp(-2.0, 1.0) == -2.0);
    /// assert!((0.0f32).clamp(-2.0, 1.0) == 0.0);
    /// assert!((2.0f32).clamp(-2.0, 1.0) == 1.0);
    /// assert!((f32::NAN).clamp(-2.0, 1.0).is_nan());
    /// ```
    ///
    #[must_use = "method returns a new number and does not mutate the original value"]
    #[stable(feature = "clamp", since = "1.50.0")]
    #[inline]
    pub fn clamp(self, min: f32, max: f32) -> f32 {
        assert!(min <= max);
        let mut x = self;
        if x < min {
            x = min;
        }
        if x > max {
            x = max;
        }
        x
    }
}