1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
/// 从 [`Iterator`] 转换。
///
/// 通过为类型实现 `FromIterator`,可以定义如何从迭代器创建它。
/// 这对于描述某种集合的类型很常见。
///
/// [`FromIterator::from_iter()`] 很少显式调用,而是通过 [`Iterator::collect()`] 方法使用。
///
/// 有关更多示例,请参见 [`Iterator::collect () `] 的文档。
///
/// 也可以看看: [`IntoIterator`].
///
/// # Examples
///
/// 基本用法:
///
/// ```
/// use std::iter::FromIterator;
///
/// let five_fives = std::iter::repeat(5).take(5);
///
/// let v = Vec::from_iter(five_fives);
///
/// assert_eq!(v, vec![5, 5, 5, 5, 5]);
/// ```
///
/// 使用 [`Iterator::collect()`] 隐式使用 `FromIterator`:
///
/// ```
/// let five_fives = std::iter::repeat(5).take(5);
///
/// let v: Vec<i32> = five_fives.collect();
///
/// assert_eq!(v, vec![5, 5, 5, 5, 5]);
/// ```
///
/// 为您的类型实现 `FromIterator`:
///
/// ```
/// use std::iter::FromIterator;
///
/// // 一个样本集合,这只是 Vec<T> 的包装
/// #[derive(Debug)]
/// struct MyCollection(Vec<i32>);
///
/// // 让我们给它一些方法,以便我们可以创建一个方法并向其中添加一些东西。
/////
/// impl MyCollection {
///     fn new() -> MyCollection {
///         MyCollection(Vec::new())
///     }
///
///     fn add(&mut self, elem: i32) {
///         self.0.push(elem);
///     }
/// }
///
/// // 我们将实现 FromIterator
/// impl FromIterator<i32> for MyCollection {
///     fn from_iter<I: IntoIterator<Item=i32>>(iter: I) -> Self {
///         let mut c = MyCollection::new();
///
///         for i in iter {
///             c.add(i);
///         }
///
///         c
///     }
/// }
///
/// // 现在我们可以创建一个新的迭代器...
/// let iter = (0..5).into_iter();
///
/// // ... 并用它制作一个 MyCollection
/// let c = MyCollection::from_iter(iter);
///
/// assert_eq!(c.0, vec![0, 1, 2, 3, 4]);
///
/// // 也收集作品!
///
/// let iter = (0..5).into_iter();
/// let c: MyCollection = iter.collect();
///
/// assert_eq!(c.0, vec![0, 1, 2, 3, 4]);
/// ```
///
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_on_unimplemented(
    message = "a value of type `{Self}` cannot be built from an iterator \
               over elements of type `{A}`",
    label = "value of type `{Self}` cannot be built from `std::iter::Iterator<Item={A}>`"
)]
#[rustc_diagnostic_item = "FromIterator"]
pub trait FromIterator<A>: Sized {
    /// 从迭代器创建一个值。
    ///
    /// 有关更多信息,请参见 [module-level documentation]。
    ///
    /// [module-level documentation]: crate::iter
    ///
    /// # Examples
    ///
    /// 基本用法:
    ///
    /// ```
    /// use std::iter::FromIterator;
    ///
    /// let five_fives = std::iter::repeat(5).take(5);
    ///
    /// let v = Vec::from_iter(five_fives);
    ///
    /// assert_eq!(v, vec![5, 5, 5, 5, 5]);
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    fn from_iter<T: IntoIterator<Item = A>>(iter: T) -> Self;
}

/// 转换为 [`Iterator`]。
///
/// 通过为类型实现 `IntoIterator`,可以定义如何将其转换为迭代器。
/// 这对于描述某种集合的类型很常见。
///
/// 实现 `IntoIterator` 的好处之一是您的类型将为 [work with Rust's `for` loop syntax](crate::iter#for-loops-and-intoiterator)。
///
///
/// 也可以看看: [`FromIterator`].
///
/// # Examples
///
/// 基本用法:
///
/// ```
/// let v = vec![1, 2, 3];
/// let mut iter = v.into_iter();
///
/// assert_eq!(Some(1), iter.next());
/// assert_eq!(Some(2), iter.next());
/// assert_eq!(Some(3), iter.next());
/// assert_eq!(None, iter.next());
/// ```
/// 为您的类型实现 `IntoIterator`:
///
/// ```
/// // 一个样本集合,这只是 Vec<T> 的包装
/// #[derive(Debug)]
/// struct MyCollection(Vec<i32>);
///
/// // 让我们给它一些方法,以便我们可以创建一个方法并向其中添加一些东西。
/////
/// impl MyCollection {
///     fn new() -> MyCollection {
///         MyCollection(Vec::new())
///     }
///
///     fn add(&mut self, elem: i32) {
///         self.0.push(elem);
///     }
/// }
///
/// // 我们将实现 IntoIterator
/// impl IntoIterator for MyCollection {
///     type Item = i32;
///     type IntoIter = std::vec::IntoIter<Self::Item>;
///
///     fn into_iter(self) -> Self::IntoIter {
///         self.0.into_iter()
///     }
/// }
///
/// // 现在我们可以进行一个新的集合了...
/// let mut c = MyCollection::new();
///
/// // ... 添加一些东西 ...
/// c.add(0);
/// c.add(1);
/// c.add(2);
///
/// // ... 然后将其转换为迭代器:
/// for (i, n) in c.into_iter().enumerate() {
///     assert_eq!(i as i32, n);
/// }
/// ```
///
/// 通常将 `IntoIterator` 用作 trait bound。只要它仍然是迭代器,就可以更改输入集合类型。
/// 可以通过限制限制来指定其他范围
/// `Item`:
///
/// ```rust
/// fn collect_as_strings<T>(collection: T) -> Vec<String>
/// where
///     T: IntoIterator,
///     T::Item: std::fmt::Debug,
/// {
///     collection
///         .into_iter()
///         .map(|item| format!("{:?}", item))
///         .collect()
/// }
/// ```
///
///
#[rustc_diagnostic_item = "IntoIterator"]
#[rustc_skip_array_during_method_dispatch]
#[stable(feature = "rust1", since = "1.0.0")]
pub trait IntoIterator {
    /// 被迭代的元素的类型。
    #[stable(feature = "rust1", since = "1.0.0")]
    type Item;

    /// 我们将其变成哪种迭代器?
    #[stable(feature = "rust1", since = "1.0.0")]
    type IntoIter: Iterator<Item = Self::Item>;

    /// 从一个值创建一个迭代器。
    ///
    /// 有关更多信息,请参见 [module-level documentation]。
    ///
    /// [module-level documentation]: crate::iter
    ///
    /// # Examples
    ///
    /// 基本用法:
    ///
    /// ```
    /// let v = vec![1, 2, 3];
    /// let mut iter = v.into_iter();
    ///
    /// assert_eq!(Some(1), iter.next());
    /// assert_eq!(Some(2), iter.next());
    /// assert_eq!(Some(3), iter.next());
    /// assert_eq!(None, iter.next());
    /// ```
    #[lang = "into_iter"]
    #[stable(feature = "rust1", since = "1.0.0")]
    fn into_iter(self) -> Self::IntoIter;
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<I: Iterator> IntoIterator for I {
    type Item = I::Item;
    type IntoIter = I;

    #[inline]
    fn into_iter(self) -> I {
        self
    }
}

/// 用迭代器的内容扩展集合。
///
/// 迭代器产生一系列值,并且集合也可以视为一系列值。
/// `Extend` trait 弥补了这一差距,使您可以通过包含该迭代器的内容来扩展集合。
/// 当使用已经存在的键扩展集合时,该条目将被更新; 如果集合允许多个具有相同键的条目,则将插入该条目。
///
///
/// # Examples
///
/// 基本用法:
///
/// ```
/// // 您可以使用一些字符扩展 String:
/// let mut message = String::from("The first three letters are: ");
///
/// message.extend(&['a', 'b', 'c']);
///
/// assert_eq!("abc", &message[29..32]);
/// ```
///
/// 实现 `Extend`:
///
/// ```
/// // 一个样本集合,这只是 Vec<T> 的包装
/// #[derive(Debug)]
/// struct MyCollection(Vec<i32>);
///
/// // 让我们给它一些方法,以便我们可以创建一个方法并向其中添加一些东西。
/////
/// impl MyCollection {
///     fn new() -> MyCollection {
///         MyCollection(Vec::new())
///     }
///
///     fn add(&mut self, elem: i32) {
///         self.0.push(elem);
///     }
/// }
///
/// // 由于 MyCollection 包含 i32 的列表,因此我们为 i32 实现 Extend
/// impl Extend<i32> for MyCollection {
///
///     // 使用具体的类型签名,这要简单一些: 我们可以调用扩展为可转换为 It32 的 Iterator 的任何内容。
///     // 因为我们需要将 i32 放入 MyCollection 中。
/////
///     fn extend<T: IntoIterator<Item=i32>>(&mut self, iter: T) {
///
///         // 实现非常简单: 遍历迭代器,然后将每个元素 add() 传递给我们自己。
/////
///         for elem in iter {
///             self.add(elem);
///         }
///     }
/// }
///
/// let mut c = MyCollection::new();
///
/// c.add(5);
/// c.add(6);
/// c.add(7);
///
/// // 让我们用三个数字扩展集合
/// c.extend(vec![1, 2, 3]);
///
/// // 我们已经将这些元素添加到最后
/// assert_eq!("MyCollection([5, 6, 7, 1, 2, 3])", format!("{:?}", c));
/// ```
///
///
#[stable(feature = "rust1", since = "1.0.0")]
pub trait Extend<A> {
    /// 用迭代器的内容扩展集合。
    ///
    /// 由于这是此 trait 唯一需要的方法,因此 [trait-level] 文档包含更多详细信息。
    ///
    ///
    /// [trait-level]: Extend
    ///
    /// # Examples
    ///
    /// 基本用法:
    ///
    /// ```
    /// // 您可以使用一些字符扩展 String:
    /// let mut message = String::from("abc");
    ///
    /// message.extend(['d', 'e', 'f'].iter());
    ///
    /// assert_eq!("abcdef", &message);
    /// ```
    #[stable(feature = "rust1", since = "1.0.0")]
    fn extend<T: IntoIterator<Item = A>>(&mut self, iter: T);

    /// 用一个元素扩展一个集合。
    #[unstable(feature = "extend_one", issue = "72631")]
    fn extend_one(&mut self, item: A) {
        self.extend(Some(item));
    }

    /// 在集合中为给定数量的附加元素保留容量。
    ///
    /// 默认实现不执行任何操作。
    #[unstable(feature = "extend_one", issue = "72631")]
    fn extend_reserve(&mut self, additional: usize) {
        let _ = additional;
    }
}

#[stable(feature = "extend_for_unit", since = "1.28.0")]
impl Extend<()> for () {
    fn extend<T: IntoIterator<Item = ()>>(&mut self, iter: T) {
        iter.into_iter().for_each(drop)
    }
    fn extend_one(&mut self, _item: ()) {}
}